THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017
Assignment 4
Due Date: 27 Apr, 2017

1. Recall that the Poincaré metric on the Poincaré disk \mathbb{D} is $d s^{2}=\frac{4\left(d x^{2}+d y^{2}\right)}{\left(1-x^{2}-y^{2}\right)^{2}}$.

Suppose that $\gamma(t)=(x(t), y(t))=\left(\frac{t}{2}, \frac{1}{2}\right)$, for $0 \leq t \leq 1$, is a curve on \mathbb{D}. Find the length of γ with respect to the Poincaré metric.
2. Let $z \in \mathbb{D}$ and $|z|=r$. Show directly that the distance $d(0, z)$ between 0 and z with respect to the Poincaré metric is $\ln \left(\frac{1+r}{1-r}\right)$.
3. Let $z_{1}=\frac{i}{2}$ and $z_{2}=\frac{1}{2}+\frac{i}{2}$ be two points on \mathbb{D}.
(a) Find the equation of P-line passing through z_{1} and z_{2} and express your answer in form of $(x-h)^{2}+(y-k)^{2}=r^{2}$.
(b) Find the distance $d\left(z_{1}, z_{2}\right)$ between z_{1} and z_{2} with respect to the Poincaré metric. (Remark: Compare to the answer obtained in question 1)
4. Let $A=z_{1}=\frac{1}{2}+\frac{i}{2}, B=z_{2}=\frac{i}{2}$ and $C=z_{3}=\frac{1}{2}-\frac{i}{2}$ be three points on \mathbb{D}.
(a) Find the P-angle $\angle B A C$.
(Hint: Consider a suitable $f \in \operatorname{Aut}(\mathbb{D})$ such that the image of A under f is 0 .)
(b) Find the sum of interior P-angles of the P-triangle $\triangle A B C$, does it less than 180° ?
5. Let $A=\frac{1}{2}-\frac{i}{2}$ and $C=\frac{i}{2}$. Find the equation of P-circle centered at C with P-line segment $C A$ as radius.
6. Let Γ be a P-circle given by the equation $\left|z-\frac{1}{2}\right|=\frac{1}{4}$. Find the P-center of Γ.
(Hint: $z_{1}=\frac{3}{4}$ and $z_{2}=\frac{1}{4}$ are points lying on Γ and the P-line segment joining them is a diameter.)

